jueves, 23 de julio de 2015

Fundamentos de la matemática

Los Fundamentos de la matemática es el estudio de conceptos matemáticos básicos como númerosfiguras geométricasconjuntosfunciones, etc. y cómo forman jerarquías de estructuras y conceptos más complejos, especialmente las estructuras fundamentalmente importantes que forman el lenguaje de la matemática: fórmulas, teorías y sus modelos, dando un significado a las fórmulas, definiciones, pruebasalgoritmos, etc. también llamados conceptos metamatemáticos, con atención a los aspectos filosóficos y la unidad de la matemática. La búsqueda por los fundamentos de la matemática es una pregunta central de la filosofía de las matemáticas; la naturaleza abstracta de los objetos matemáticos presenta desafíos filosóficos especiales.
Pero los fundamentos de la matemática como un todo no apuntan a contener los fundamentos de cada tópico matemático. Generalmente, los fundamentos de un campo de estudio, se refieren a un análisis más o menos sistemático de sus conceptos fundamentales más básicos, su unidad conceptual y su ordenamiento natural o jerarquía de conceptos, los cuales podrían ayudar a conectarlos con el resto del conocimiento humano. El desarrollo, emergencia y aclaración de los fundamentos puede aparecer tarde en la historia de un campo, y podría no ser visto por cualquiera como su parte más interesante.
Las matemáticas siempre jugaron un rol especial en el pensamiento científico, sirviendo desde tiempos antiguos como modelo de verdad y rigor para la inquisición racional, dando herramientas o incluso fundamentos para otras ciencias (especialmente la física). Pero lo mucho de la matemática hacia abstracciones más elevadas en el siglo XIX, trajeron paradojas y desafíos nuevos, exigiendo un examen más profundo y sistemático de la naturaleza y el criterio de la verdad matemática, así como también una unificación de las diversas ramas de la matemática en un todo coherente.
La búsqueda sistemática de los fundamentos de la matemática empezó al fin del siglo XIX, y formó una disciplina matemática nueva llamada lógica matemática, con fuertes vínculos con la ciencia de la computación teórica. Fue mediante una serie de crisis con resultados paradójicos, hasta que los descubrimientos se estabilizaron durante el siglo XX con un amplio y coherente cuerpo de conocimiento matemático con muchísimos aspectos o componentes (teoría de conjuntosteoría de modelosteoría de pruebas...), cuyas propiedades detalladas y posibles variantes aún están en campo de investigación activa. Su alto nivel de sofisticación técnica inspiró a muchos filósofos a conjeturar que puede servir como modelo o patrón para los fundamentos de otras ciencias.

Índice

  [mostrar

Crisis de los fundamentos[editar]

La crisis fundacional de la matemática (llamada originalmente en alemánGrundlagenkrise der Mathematik) fue un término acuñado a principios del siglo XX para referirse a la situación teórica que llevó a una investigación sistemática y profundamente de los fundamentos de la matemática, y que acabó inaugurando una nueva rama de la matemática.
Numerosas escuelas filosóficas matemáticas incurrieron en dificultades una tras otra, a medida que la asunción de que los fundamentos de la matemática podían ser justificados de manera consistentes dentro de la propia matemática fue puesta en duda por el descubrimiento de varias paradojas (entre ellas la célebre paradoja de Russell).
El término "paradoja" no debe ser confundido con el término contradicción. Una contradicción dentro de una teoría formal es una demostración formal de la existencia de un absurdo como resultado de un conjunto de asunciones inapropiadas (tales como 2 + 2 = 5), un conjunto de axiomas o teoría que da lugar a una contradicción se clasifica de inconsistente y debe ser rechazada como teoría útil (ya que en ella cualquier proposición acabaría siendo demostrable). Sin embargo, una paradoja puede referirse o bien a un resultado contraintuitivo pero verdadero, o a un argumento informal que lleva a una contradicción, así que una teoría candidata donde se atente la formalización de un argumento debe inhabilitar al menos uno de sus pasos; en este caso el problema es encontrar una teoría satisfactoria sin contradicciones. Ambos significados pueden aplicar si la versión formalizada del argumento forma la prueba de una verdad sorprendente. Por ejemplo, la paradoja de Russell puede ser expresada como "no hay un conjunto que contenga a todos los conjuntos" (exceptuando algunas teorías axiomáticas marginales).
Algunas escuelas de pensamiento al buscar acercarse al enfoque correcto a los fundamentos de la matemática se oponían ferozmente entre si. La escuela liderante era la escuela de enfoque formalista, de la cual, David Hilbert era el proponente principal, culminando con lo que se conoce como Programa de Hilbert, quien pensaba en fundamentar la matemática en una pequeña base de un sistema lógico sondeado en términos del finitismo metamatemático. El oponente principal era la escuela del intuicionismo, liderada por L. E. J. Brouwer, quien resueltamente descartó el formalismo como un juego futil con símbolos (van Dalen, 2008). La pelea fue acrimoniosa. En 1920 Hilbert triunfó en sacar a Brouwer, a quien él consideraba una amenaza a la matemática, removiéndolo del tablón editorial del Mathematische Annalen, la revista líder en matemáticas en aquella época.

Perspectivas filosóficas[editar]

A principios del siglo XX, tres escuelas de filosofía de la matemática tenían visiones contrapuestas sobre los fundamentos matemáticos: el Formalismo, el Intuicionismo y el Logicismo.

Formalismo[editar]

La postura de los formalistas, tal como fue enunciada por David Hilbert (1862–1943), es que la matemática es sólo un lenguaje formal y una serie de juegos. De hecho, Hilbert usó el término "juego de fórmulas" en su respuesta de 1927 al criticismo de L. E. J. Brouwer:
"And to what has the formula game thus made possible been successful? This formula game enables us to express the entire thought-content of the science of mathematics in a uniform manner and develop it in such a way that, at the same time, the interconnections between the individual propositions and facts become clear... The formula game that Brouwer so deprecates has, besides its mathematical value, an important general philosophical significance. For this formula game is carried out according to certain definite rules, in which the technique of our thinking is expressed. These rules form a closed system that can be discovered and definitively stated."1
Por tanto, Hilbert insistió que la matemática no es un juego "arbitrario" con reglas "arbitrarias", sino más bien un juego que debe coincidir con nuestro pensamiento, que son el punto de partida de nuestra exposición oral y escrita.1
"We are not speaking here of arbitrariness in any sense. Mathematics is not like a game whose tasks are determined by arbitrarily stipulated rules. Rather, it is a conceptual system possessing internal necessity that can only be so and by no means otherwise".2
La filosofía inicial del formalismo, tal como es ejemplificada por David Hilbert, es una respuesta a las paradojas de la teoría axiomática de conjuntos, que se basa en la lógica formal. Prácticamente todos los teoremas matemáticos hoy en día se pueden formular como teoremas de la teoría de conjuntos. La verdad de un enunciado matemático, en esta teoría está representada por el hecho de que una declaración se puede derivar de los axiomas de la teoría de conjuntos utilizando las reglas de la lógica formal.
 El uso del formalismo por sí solo no explica varias cuestiones: ¿por qué debemos utilizar estos axiomas y no otros, por qué debemos emplear unas reglas lógicas y no otras, por qué proposiciones matemáticas "verdaderas" (p. ej. la leyes de la aritmética) parecen ser verdad? y así sucesivamente. Hermann Weyl hará estas mismas preguntas a Hilbert:
"What "truth" or objectivity can be ascribed to this theoretic construction of the world, which presses far beyond the given, is a profound philosophical problem. It is closely connected with the further question: what impels us to take as a basis precisely the particular axiom system developed by Hilbert? Consistency is indeed a necessary but not a sufficient condition. For the time being we probably cannot answer this question...."3
En algunos casos, estas preguntas pueden ser contestadas satisfactoriamente a través del estudio de las teorías formales, en disciplinas como las matemáticas inversas y la teoría de la complejidad computacional. Como ha señalado por Weyl, los sistemas lógicos formales también corren el riesgo de inconsistencia; en la aritmética de G. Peano, esto sin duda ya se ha salvado con varias pruebas de consistencia, pero hay debate sobre si son o no son suficientemente finitistas para que tengan sentido. El segundo teorema de incompletitud de Gödel establece que los sistemas lógicos de la aritmética no pueden contener una prueba válida de su propia consistencia. Lo que Hilbert quería hacer era probar que un sistema lógico S fuese consistente, basado en principios P que fueran sólo una pequeña parte de S. Pero Gödel demostró que los principios P ni siquiera podrían demostrar su propia coherencia, por no hablar de la de S!

Intuicionismo[editar]

Los intuicionistas, como Brouwer (1882-1966), sostienen que la matemática es una creación de la mente humana. Los números, como los personajes de los cuentos de hadas, no son más que entidades mentales, que no existiría si las mentes humanas no pensaran en ellos.
La filosofía fundamental del intuicionismo o constructivismo, como se ejemplifica en extremo por Brouwer y más coherente de Stephen Kleene, requiere pruebas para ser " constructivo" en naturaleza - la existencia de un objeto debe ser demostrada en lugar de deducirse de una demostración de la imposibilidad de su no-existencia. Por ejemplo, como una consecuencia de esto la prueba conocida como reducción al absurdo se vería con sospecho.
Algunas teorías modernas de la filosofía de las matemáticas niegan la existencia de fundamentos en el sentido original. Algunas teorías tienden a centrarse en la práctica de las matemáticas, y tienen como objetivo describir y analizar el funcionamiento real de los matemáticos como grupo social. Otras tratan de crear una ciencia cognitiva de las matemáticas, se centran en la cognición humana como el origen de la fiabilidad de las matemáticas cuando se aplica al mundo real. Estas teorías propondrían encontrar fundamentos sólo en el pensamiento humano, y no en cualquier construcción externa objetiva. La cuestión sigue siendo controvertida

Logicismo[editar]

El logicismo es una de la escuelas de pensamiento de filosofía de la matemática, que considera que la matemática es básicamente una extensión de la lógica y por tanto una buena parte de la misma o toda la matemática es reducible a la lógica. Bertrand Russell yAlfred North Whitehead fueron partidarios de esta línea de pensamiento inaugurada por Gottlob Frege.

Platonismo de Teoría de conjuntos[editar]

Muchos investigadores de la teoría axiomática de conjuntos han suscrito lo que se conoce como el platonismo de la teoría de conjuntos, ejemplificado por el matemático Kurt Gödel.
Varios matemáticos teóricos en conjuntos siguieron este enfoque y activamente buscaron posibles axiomas que se pueden considerar como verdaderos por razones heurísticas y que decidieran la hipótesis del continuo. Se estudiaron muchos grandes axiomascardinales, pero la hipótesis del continuo permaneció independiente. Se consideraron otros tipos de axiomas, pero ninguno de ellos hasta ahora ha logrado consenso como solución para el problema continuo.

Argumento de indispensabilidad para el realismo[editar]

Este argumento de Willard Quine y Hilary Putnam dice (en resumen de Putnam),
     «La cuantificación sobre las entidades matemáticas es indispensable para la ciencia [...]; Por lo tanto, debemos aceptarla; pero esto nos compromete a aceptar la existencia dichas entidades matemáticas en cuestión».
Sin embargo Putnam no era un platónico.

Realismo rudimentario[editar]

Pocos matemáticos suelen estar preocupados en su trabajo diario sobre el logicismo, el formalismo o cualquier otra posición filosófica. En cambio, su principal preocupación es que la empresa matemática en su conjunto siga siendo siempre productiva. Por lo general, esto se asegura al permanecer con una mente abierta, práctica y ocupada; potencialmente amenazada con volverse excesivamente ideológica, fanáticamente reduccionista o perezosa. Este punto de vista fue expresado por el Premio Nobel de FísicaRichard Feynman
People say to me, “Are you looking for the ultimate laws of physics?” No, I’m not… If it turns out there is a simple ultimate law which explains everything, so be it — that would be very nice to discover. If it turns out it’s like an onion with millions of layers… then that’s the way it is. But either way there’s Nature and she’s going to come out the way She is. So therefore when we go to investigate we shouldn’t predecide what it is we’re looking for only to find out more about it. Now you ask: “Why do you try to find out more about it?” If you began your investigation to get an answer to some deep philosophical question, you may be wrong. It may be that you can’t get an answer to that particular question just by finding out more about the character of Nature. But that’s not my interest in science; my interest in science is to simply find out about the world and the more I find out the better it is, I like to find out…4
Philosophers, incidentally, say a great deal about what is absolutely necessary for science, and it is always, so far as one can see, rather naive, and probably wrong5
y también por Steven Weinberg6
The insights of philosophers have occasionally benefited physicists, but generally in a negative fashion—by protecting them from the preconceptions of other philosophers.(...) without some guidance from our preconceptions one could do nothing at all. It is just that philosophical principles have not generally provided us with the right preconceptions.
Physicists do of course carry around with them a working philosophy. For most of us, it is a rough-and-ready realism, a belief in the objective reality of the ingredients of our scientific theories. But this has been learned through the experience of scientific research and rarely from the teachings of philosophers. (...) we should not expect [the philosophy of science] to provide today's scientists with any useful guidance about how to go about their work or about what they are likely to find. (...)
After a few years' infatuation with philosophy as an undergraduate I became disenchanted. The insights of the philosophers I studied seemed murky and inconsequential compared with the dazzling successes of physics and mathematics. From time to time since then I have tried to read current work on the philosophy of science. Some of it I found to be written in a jargon so impenetrable that I can only think that it aimed at impressing those who confound obscurity with profundity. (...) But only rarely did it seem to me to have anything to do with the work of science as I knew it. (...)
I am not alone in this; I know of no one who has participated actively in the advance of physics in the postwar period whose research has been significantly helped by the work of philosophers. I raised in the previous chapter the problem of what Wigner calls the "unreasonable effectiveness" of mathematics; here I want to take up another equally puzzling phenomenon, the unreasonable ineffectiveness of philosophy.
Even where philosophical doctrines have in the past been useful to scientists, they have generally lingered on too long, becoming of more harm than ever they were of use.
Él creía que cualquier indecidibilidad en matemáticas, como la hipótesis del continuo, podría potencialmente ser resuelta a pesar del teorema de incompletitud, mediante la búsqueda de nuevos axiomas adecuados para añadir a la teoría de conjuntos.

Resolución parcial de la crisis[editar]

A partir de 1935 el grupo Bourbaki de matemáticos franceses empezaron a publicar una serie de libros para formalizar muchas áreas de matemáticas basados en los nuevos fundamentos de la teoría de conjuntos.

Evolución histórica[editar]

Matemática en la Antigua Grecia[editar]

Aunque que el uso práctico de la matemática fue desarrollada ya en civilizaciones de la edad de bronce, el interés específico por sus aspectos fundacionales y teóricos parece remontarse a la matemática helénica. Los primeros filósofos griegos discutieron ampliamente sobre qué rama de la matemática era más antiuga, si la aritmética o la geometría. Zenón de Elea (490 a. C - ca. 430 a. C.) formuló cuatro aporías que aparentan mostrar que el cambio es imposible, que en esencia no fueron convenientemente aclaradas hasta el desarrollo de matemática moderna.
La escuela pitagórica de matemática insistía originalmente en que solo existían los números naturales y racionales. El descubrimiento de la irracionalidad de √2, la proporción de la diagonal de un cuadrado con su lado (data del siglo V a.C), fue un golpe filosófico a dicha escuela que solo aceptaron de mala gana. La discrepancia entre racionales y reales fue finalmente resuelta por Eudoxo de Cnido, un estudiante de Platón, quien redujo la comparación de las proporciones de los irracionales a comparaciones a comparaciones de múltiples proporciones racionales, además de anticipar la definición de número real de Richard Dedekind.
En su obra Segundos analíticosAristóteles (384 a.C - 322 a.C) asentó el método axiomático, para organizar lógicamente un campo del conocimiento en términos de conceptos primitivos, axiomas, postulados, definiciones, y teoremas, tomando una mayoría de sus ejemplos de la aritmética y la geometría. This method reached its high point with Euclid's Elements (300 BC), a monumental treatise on geometry structured with very high standards of rigor: each proposition is justified by a demonstration in the form of chains of syllogisms (though they do not always conform strictly to Aristotelian templates). Aristotle's syllogistic logic, together with the Axiomatic Method exemplified by Euclid's Elements, are universally recognized as towering scientific achievements of ancient Greece.

Análisis sobre los reales[editar]

Cauchy (1789 - 1857) inició el proyecto de demostrar los teoremas de cálculo infinitesimal sobre una base rigurosa, rechazando el principio de generalidad del álgebra usado por diversos matemáticos durante el siglo XVIII. En su Cours d'Analyse ('Curso de análisis) de 1821, Cauchy definió las cantidades infinitesimales como sucesiones decrecientes que convergen a 0, que pueden ser usadas para definir la continuidad. Aunque no formalizó ninguna noción de convergencia.
La definición moderna del criterio (ε, δ) y la noción de función continua fueron desarrollada por primera vez por Bolzano en 1817, pero durante un tiempo fue relativametne poco conocida. Estas nociones dan un fundamente riguroso al cálculo infinitesimal basado en el conjunto de los números reales, y resuleven claramente tanto las paradojas de Zenón como los argumentos de Berkeley.

No hay comentarios:

Publicar un comentario